
Options in **Open Source** Virtualization and Cloud Computing

Andrew Hadinyoto Republic Polytechnic

No Virtualization

Virtualization (general)

Benefits?

- Maximizing computer hardware utilization
- Reducing compute hardware procurement
- Learning, Teaching, Experimenting
- Development and staging
- Much more

Options in Linux

- VMWare
- VirtualBox
- Xen
- KVM
- QEMU
- (others)

But first, the CPU (Intel, AMD)

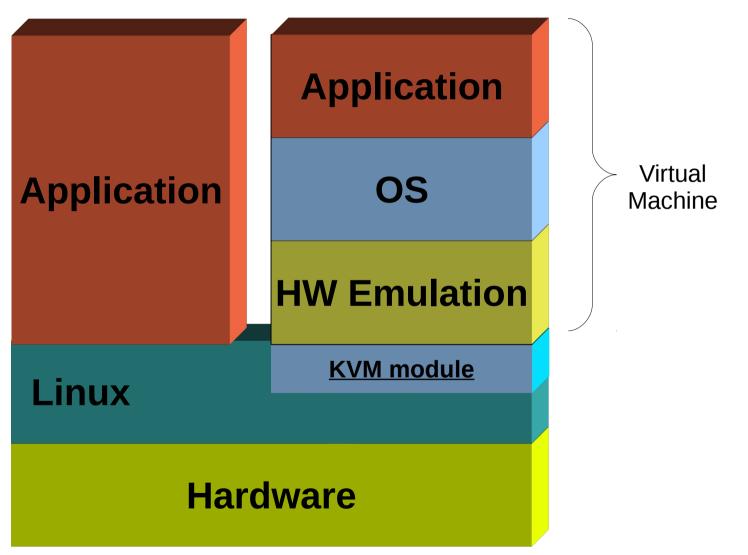
- Does it have VT-x or AMD-V?
 - CPU direct support for virtualization
- No VT-x or AMD-V
 - Para virtualization (modified OS)
 - Full virtualization ala VMWare or VirtualBox
- With VT-x or AMD-V
 - Approximately CPU sold from mid 2006 onward should have it – but, check the spec and BIOS
 - Hardware assisted virtualization (HVM)
 - Full virtualization with HVM

VMWare

- Not Open Source
- Good performance
- Solid and stable
- Great for Desktop and Server
 - VMWare Server, ESX, ESXi
- Supports HVM
- Problem with Linux and VMWare Server
 - Patching is needed
 - Time skew disable ACPI and APM on the host

VirtualBox

- Two type of Licenses
 - Open Source Edition GPL
 - Proprietary
 - PUEL for evaluation and personal use
- As of version 3.0 onward GREAT!
- Supports HVM
- Runs on Linux, Windows (includes 7), Mac OS X (Snow Leopard)
- Command line support
- Recommended for desktop (we'll talk more about this)


Xen

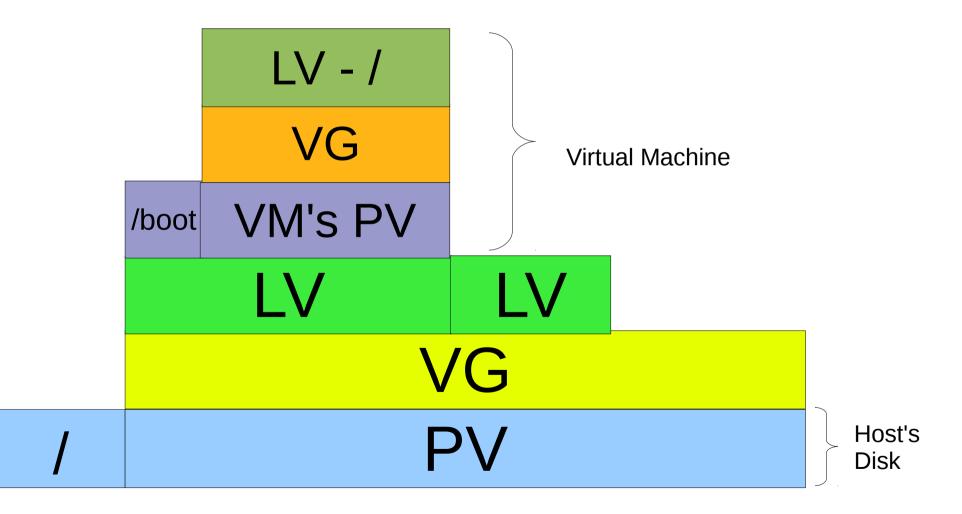
- Open Source GPL
- Excellent performance near native speed
 - Paravirtualization best out of the box
 - Hardware assisted virtualization (HVM)
- Excellent for server
- Issues
 - Intrusive fork of the kernel
 - RHEL/CentOS 5.x uses 2.6.18 kernel
 - HVM is extremely slow requires configuration tweaking

KVM

- License GPL, LGPL
- Acquired by Red Hat
- The future? Very likely
 - Red Hat current and future strategy
 - Ubuntu Cloud/Eucalyptus is using KVM too
- Only supports HVM must have VT-x / AMD-V
- KVM is a Linux module export /dev/kvm
- Relies on QEMU for hardware emulation
 - I/O (block and eth)
 - Guest execute directly
 - Virtio paravirtualization *driver* better performance

More on KVM

http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf


Working with KVM

- libvirtd
 - virsh, virt-install, virt-clone, virt-manager, virt-viewer
- Install new VM with
 - virt-manager (GUI)
 - virt-install (CLI)
- virtio enabled manually
 - http://wiki.libvirt.org/page/Virtio
 - /etc/libvirt/qemu/yourvm.xml
- Managing
 - virt-manager (GUI)
 - virsh

Storage and KVM

- Image (file) qcow2 format
- Regular disk partition
 - Best performance
- Logical Volume Manager (LVM)
 - Most flexible resizable, expandable
 - Better than image-based but some overhead
 - A little complicated

Storage with LVM

Networking and KVM

- libvirtd provides *virbr0* interface by default
 - Provides DHCP interface to the VMs
 - NAT
- Bridge
 - Best if VMs are used servers
 - Appears as if it is a separate network interface
 - Manual setup
 - CentOS/RHEL /etc/sysconfig/network-scripts/ifcfg-br0

Cloning

- Install OS on one VM
- Clone it with *virt-clone*
 - virt-clone --force --original vmtoclone --name newvm --file /dev/VG/newvm

You need small VM size?

- Ubuntu JeOS Just Enough OS
- Build using vmbuilder
 - Produce *qcow2* image for KVM
 - Produce *vmdk* image for VMWare
- VM with LAMP \sim 420MB
- https://help.ubuntu.com/community/JeOSVMBu ilder

Random Notes VirtualBox

- Multiple VMs to form an internal network
 - *intnet* interfaces
 - Learning/Teaching networking, System Administration
- Ubuntu JeOS and vmbuilder
 - VirtualBox understands VMWare vmdk image format
 - Produce JeOS vmdk image, run it on VirtualBox

Cloud Computing

Cloud Computing Types

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Utility Computing

Software as a Service

- Software solution that runs on the provider's infrastructure
- Usually web-based application
- Example:
 - Google Docs, Google Map
 - Salesforce (sales management application)
- May be integrated with other apps (mashups)

Platform as a Service

- Provides a platform for developing application
- Google App Engine (GAE)
 - Allows developer to write web-app code, and
 - Deploy it over at GAE's servers
 - The app will then be accessible from GAE's server
 - Python-based framework (Java is coming)
- Heroku
 - Ruby on Rails apps
 - Using "git" to push from local development to the cloud

Google App Engine (GAE)

- Running web application on Google App Engine platform
- Optimized for Web application
- Using GAE web framework
 - Currently, Python-based framework
 - Other programming languages coming soon
- Data storage provided by GAE
 - Database, but not RDBMS like MySQL

Utility Computing

- Computing resources as public utility
 - Public utility such as electricity, water, gas
- Mostly using virtualization to maximize hardware utilization
- Computing resources are for general purpose use
- Example:
 - Amazon Elastic Compute Cloud (EC2)

Elastic Compute Cloud (EC2)

- "Renting" of computing Resources
 - Small, Large and Extra Large computing power
- Xen Virtual Machines
- Currently three zones: US-East, US-West, EU (Asia likely will be in Singapore)
- As of now, less than US\$0.10 per virtual machine for small VM (US-East)
 - Windows OS costs more
- Additional charges apply for the usage of
 - Bandwidth usage
 - Monitoring
 - Permanent IP address (Elastic IP)
- Details: http://aws.amazon.com/ec2/#pricing

Simple Storage Service (S3)

- Permanent storage in the cloud
- You pay by the GB
 - Currently US\$0.15 per GB per month for less than 50TB
 - Can handle Petabytes (PB = 1,000TB) of data
- Separate charges for storing and retrieving of data
- Data transfer will apply soon
- Details: http://aws.amazon.com/ec2/#pricing

Elastic Block Storage (EBS)

- EC2 can have permanent storage via EBS
- EBS is using S3
- EBS must be in the same zone as the EC2 instances
- Mountable from within the instance
- Currently, US\$0.10 per GB per month
- Currently, US\$0.10 per million I/O (Input Output)
- Details: http://aws.amazon.com/ebs/

Hypothetical Calculation

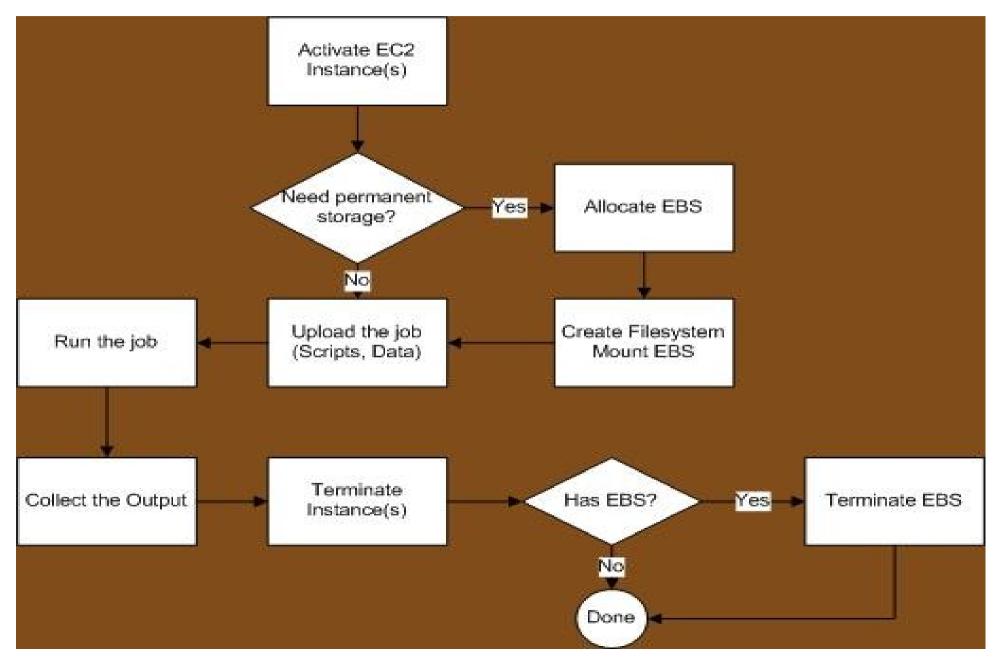
- 25 instances, small, US-East
- 8 hours * 4 days = 32 hours
- 25 GB of storage
- 10 GB I/O between the machine and storage
- 10 GB Network I/O between EC2 instances to my office
- Total: US\$69.85
- Calculator:
 http://calculator.s3.amazonaws.com/calc5.html

EC2 - Good and Bad

- Advantages
 - On demand thousands of computers in a matter of minutes (but, default is 20)
 - On demand large storage (GB, TB, PB) in a matter of minutes
 - No setting up of your own infrastructure
 - Can run all sorts of applications (EC2 provides the machine, NOT the application)
- Disadvantages
 - Not permanent once you shutdown your instance, all data will be cleared
 - Latency issue I/O to storage takes long because it's not in the same machine
 - Not suitable for some applications

Applications

- It's GOOD for
 - Batch processing
 - Converting large number of videos or pictures
 - Digital rendering
 - Data warehousing
 - Processing large data for business analysis
 - Running MapReduce jobs
 - Large scale data processing
- It's BAD for (when EBS is used)
 - Highly interactive app
 - Web application
 - Database data must be stored in EBS
 - Yet, EBS has poor latency


Working with EC2

- Web Interface AWS Management Console
 - http://aws.amazon.com/console/
- EC2 API tools
 - Command line interface
 - Using Java JDK 1.5 and above
 - Interacts via Web Services
 - Using SOAP web service protocol
 - In fact, AWS stands for Amazon Web Services
 - Runs on Linux, Windows, Mac OSX, Solaris
 - Scriptable good for automation

Main Flow of Setting Up EC2 Tools

- JDK is Java Development Kit
- Some environment variables must be set to locate
 - Java Runtime
 - Private Key
 - Certificate

Main Flow Working With EC2

Security

- Login credentials
 - Email and password login
 - For AWS Management Console login
- Private Key and Certificate
 - To make call with EC2 API
 - *cert-UVUIMO.....pem* (X.509 Certificate)
 - *pk-UVUIMO....pem* (Private Key)
- Key Pair
 - SSH key to access your instance
- Security Group
 - Firewall rule for accessing your instance

Ref: https://aws-portal.amazon.com/gp/aws/developer/account/index.html

Working with EC2

- Connection is mostly via SSH and can be slow at times
- Issuing remote SSH command maybe a better option
 - ssh-agent and then ssh-add can be used for passwordless access
 - For our case today, it helps to set our default identity (no "-i id_rsa-c330YourName")

Q and A?

Offline: and rew_had iny ot@rp.sg

EC2 Demo

Activities – KVM

- Enable VT-x / AMD-V in BIOS
- Install KVM
 - Ubuntu/Debian apt-get install kvm
 - CentOS yum install kvm
- Install virt-manager
 - Ubuntu/Debian apt-get install virt-manager
- Get the Ubuntu Server
 - http://foss.sit.rp.sg/ubuntu/

Activities - KVM - JeOS Ubuntu/Debian only

- apt-get install ubuntu-vm-builder
- Install virt-manager if you haven't
- Get the build script
 - http://foss.sit.rp.sg/ubuntu/build-kvm.sh
 - Run as root
- Run the VM from virt-manager once finished
- Setup the bridge
 - http://foss.sit.rp.sg/ubuntu/interfaces (copy to /etc/network/interfaces
 - /etc/init.d/networking/restart

- Setup bridge
 - Edit /etc/libvirt/qemu/ubuntu.xml
 - Modify from:
 - [...]
 - <interface type='network'> <source network='default'/> </interface>
 - [...]
 - To:
 - [...]
 - <interface type='bridge'> <source bridge='br0'/> </interface>
 - [...]