
Mr. Nay Linn Than
Myanmar Computer Professionals Association (MCPA)

Sixth AOSS workshop, 7-11 Mar 2010 @ UniSIM Singapore

Overview
 Goal is to highlight many of Python’s capabilities.
 Generally speaking, most programmers don’t have

trouble picking up Python
 Advanced Programming in Python

 String processing
 Working with the files systems, file system objects
 Database Interface
 Operation system interfaces
 Programming with Threads
 Network programming

Python Library
 Python is packaged with a large library of standard modules

 String processing
 Operating systems interfaces
 Networking
 Threads
 GUI
 Database
 Language services, (Jython, Cython)
 Security

 And there are many third party modules
 XML
 Numeric Processing
 Plotting/Graphics
 Etc.

String Processing

Regular Expressions
 Background

 Regular expressions are patterns that specify a matching rule.
 Generally contain a mix of text and special characters

foo.* # Matches any string starting with foo
\d* # Match any number decimal digits
[a-zA-Z]+ # Match a sequence of one or more letters

 The re module
 Provides regular expression pattern matching and replacement.

 General idea
 Regular expressions are specified using syntax described.
 Compiled into a regular expression "object".
 This is used to perform matching and replacement operations.

The re Module
 Example

import re
pat = r’(\d+)\.(\d*)’ # My pattern
r = re.compile(pat) # Compile it
m = r.match(s) # See if string s matches
if m:
Yep, it matched
...
else:
Nope

 A more complex example
Replace URL such as http://www.python.org with a hyperlink
pat = r’(http://[\w-]+(\.[\w-]+)*((/[\w-~]*)?))’
r = re.compile(pat)
r.sub(’\\1’,s) # Replace in string

Working with the files systems
 File Objects
 Standard Input, Output, and Error
 File and Path Manipulation
 Globbing
 Low-Level File I/O operations
 Low-level File and Directory Manipulation
 The StringIO and cStringIO modules

DBM-Style Databases
 Python provides a number of DBM-style database interfaces

 Key-based databases that store arbitrary strings.
 Similar to shelve, but can’t store arbitrary objects (strings only)
Examples: dbm, gdbm, bsddb, anydbm (for generic access)

 Example:
import dbm
d = dbm.open("database","r")
d["foo"] = "bar" # Store a value
s = d["spam"] # Retrieve a value
del d["name"] # Delete a value
d.close() # Close the database

 Comments
 The availability of DBM modules depends on optional libraries and

may vary.
 Don’t use these if you should really be using a relational database (e.g.,

MySQL).

Databases (Working with MySQL)
 The beauty of Python is that it can provide abstraction in

data access and processing at various levels.
 A Python-MySQL combination is a good option for a data-

bound application.
 Python has provided a specification for API for database

access.
 This specification is in its second version and is known as

DB-API 2.0.
 Any database access module has to conform to the DB-API

2.0 specification.
 Almost all the modules for RDBMSs conform to the

specification.

MySQLdb module
You can download it from

http://sourceforge.net/projects/mysql-python/

There are four basic type of process to access database;
1. Connecting with the database
2. Creation of the cursor
3. Execution of the SQL statement
4. Fetching the result set and iterating over the result set

http://sourceforge.net/projects/mysql-python/�

1. Connecting with the database
 A connection to the database must be established.
 Done by using the connect() method.
 Then connect() is the constructor of the MySQLdb.

db= MySQLdb.connect(host=’Demo’, user=’root’ ,
passwd=’adm1n’, db=’test’)

2. Creation of the cursor
 The cursor is that area in the memory where the data

fetched from the data tables are kept once the query is
executed.

 MySQL does not support cursors.
 But it is easy to emulate the functionality of cursors by

using the MySQLdb .

cursor= db.cursor()

3. Execution of the SQL statement
 Any SQL statement supported by MySQL can be

executed using the execute() method of the Cursor
class.

 The SQL statement is passed as a string to it.
 Once the statement is executed successfully, the

Cursor object will contain the result set of the
retrieved values.

cursor.execute(“select * from employees”)

4. Fetching the resultset
 In the real world, fetching all the rows at once may not

be feasible.
 MySQLdb answers this situation by providing different

versions of the fetch() function of Cursor class.
 fetchone(): This fetches one row in the form of a

Python tuple. (increments the cursor position by one)
 fetchall(): This fetches all the rows as tuple of tuples.

4. Fetching the resultset (cont)
 To fetch one row at a time and display the result

#get the count of total rows in the #resultset
numrows = int(cursor.rowcount)
get and display one row at a time
for x in range(0,numrows):

row = cursor.fetchone()
print row[0], "-->", row[1]

4. Fetching the resultset (cont)
 By using fetchall()

result = cursor.fetchall()
iterate through resultset
for record in result:

print record[0] , "-->", record[1]

 The iteration is through the core Python APIs only.

Operating System Services
 Python provides a wide variety of operating system

interfaces
 Basic system calls
 Operating environment
 Processes
 Timers
 Signal handling
 Error reporting
 Users and passwords

 Implementation
 A large portion of this functionality is contained in the os module.
 The interface is based on POSIX.
 Not all functions are available on all platforms (especially

Windows/Mac).

Windows and Macintosh
 Comment

 Most of Python’s OS interfaces are Unix-centric.
 However, much of this functionality is emulated on non-Unix

platforms.
 With a number of omissions (especially in process and user

management).
 The msvcrt module

 Provides access to a number of functions in the Microsoft
Visual C++ runtime.

 Functions to read and write characters.
 Some additional file handling (locking, modes, etc...).
 But not a substitute for PythonWin.

 The macfs, macostools, and findertools modules
 Manipulation of files and applications on the Macintosh.

Threads
 Background

 A running program is called a "process"
 Each process has memory, list of open files, stack, program counter, etc...
 Normally, a process executes statements in a single sequence of control-flow.

 Process creation with fork(),system(), popen(), etc...
 These commands create an entirely new process.
 Child process runs independently of the parent.
 Has own set of resources.
 There is minimal sharing of information between parent and child.
 Think about using the Unix shell.

 Threads
 A thread is kind of like a process (it’s a sequence of control-flow).
 Except that it exists entirely inside a process and shares resources.
 A single process may have multiple threads of execution.
 Useful when an application wants to perform many concurrent tasks on shared

data.
 Think about a browser (loading pages, animations, etc.)

Python Threads
 Python supports threads on the following platforms

 Solaris
 Windows
 Systems that support the POSIX threads library (pthreads)

 Thread scheduling
 Tightly controlled by a global interpreter lock and scheduler.
 Only a single thread is allowed to be executing in the Python interpreter at

once.
 Thread switching only occurs between the execution of individual byte-codes.
 Long-running calculations in C/C++ can block execution of all other threads.
 However, most I/O operations do not block.

 Comments
 Python threads are somewhat more restrictive than in C.
 Effectiveness may be limited on multiple CPUs (due to interpreter lock).
 Threads can interact strangely with other Python modules (especially signal

handling).
 Not all extension modules are thread-safe.

Network Programming
 Python provides a wide assortment of network

support
 Low-level programming with sockets (if you want to

create a protocol).
 Support for existing network protocols (HTTP, FTP,

SMTP, etc...)
 Web programming (CGI scripting and HTTP servers)
 Data encoding

 Recommended Reference
 Unix Network Programming by W. Richard Stevens.

Network Programming, Socket
 Python’s networking modules primarily support TCP/IP

 TCP - A reliable connection-oriented protocol (streams).
 UDP - An unreliable packet-oriented protocol (datagrams).
 Of these, TCP is the most common (HTTP, FTP, SMTP, etc...).

 Both protocols are supported using "sockets"
 A socket is a file-like object.
 Allows data to be sent and received across the network like a file.
 But it also includes functions to accept and establish connections.
 Before two machines can establish a connection, both must create a socket

object.
 Socket programming in a nutshell

 Server creates a socket, binds it to some well-known port number, and starts
listening.

 Client creates a socket and tries to connect it to the server (through the above
port).

 Server-client exchange some data.
 Close the connection (of course the server continues to listen for more clients).

Conclusion
 Python is a great language for experimentation.
 Again, most programmers don’t have trouble picking up

Python
 This is a great way to learn about the various modules
 For more information:

 Python Essential Reference (By David M. Beazley)
 Online documentation (www.python.org)

 My References:
 O’Reilly Open Source Conference (David M. Beazley)
 Apress, Beginning Python From Novice to Professional (2005)
 http://www.devshed.com/c/a/Python/Database-

Programming-in-Python-Accessing-MySQL

Thank You!

	Advance Python Programming
	Overview
	Python Library
	String Processing
	Regular Expressions
	The re Module
	Working with the files systems
	DBM-Style Databases
	Databases (Working with MySQL)
	MySQLdb module
	1. Connecting with the database
	2. Creation of the cursor
	3. Execution of the SQL statement
	4. Fetching the resultset
	4. Fetching the resultset (cont)
	4. Fetching the resultset (cont)
	Operating System Services
	Windows and Macintosh
	Threads
	Python Threads
	Network Programming
	Network Programming, Socket
	Conclusion
	Thank You!

