
LINUX Internals

DAY -1

What is Linux ?

• Linux is an operating system that was initially created
as a hobby by a young student, Linus Torvalds, at the
University of Helsinki in Finland.

• Linus began his work in 1991 when he released
version 0.02 and worked steadily until 1994 when
version 1.0 of the Linux Kernel was released.

• The kernel, at the heart of all Linux systems, is
developed and released under the GNU General
Public License (GPL) and its source code is freely
available to everyone (http://www.kernel.org).

Linux Kernel Version

• The first official release of Linux 1.0 was in March
1994.

• Just a year later, Linux 1.2 was released.

• Linux 2.0 arrived in June 1996.

• Linux 2.2 in January 1999.

• Linux 2.4 in January 2001.

• Linux 2.6 in December 2003.

Linux - Why Popular ?

• Royalty-free – Open Source
• Strong networking support
• Standard (UNIX/POSIX) interface
• Growing number of embedded distributions
• Availability of support
• Modern OS (eg. memory management, kernel

modules, etc.)

Linux Features

• Written in High Level Language ‘C’
• Monolithic
• Layered Approach
• Simple User Interface
• Hierarchical File System
• Dynamic Module Loading Support
• Pre-emptive Kernel

General Structure of Linux kernel

Monolithic Kernel

• It runs every basic system service like process and
memory management, interrupt handling and I/O
communication, file system, etc. in kernel space

• It is constructed in a layered fashion, built up from the
fundamental process management up to the interfaces to
the rest of the operating system (libraries and on top of
them the applications).

• The inclusion of all basic services in kernel space has
three big drawbacks: the kernel size, lack of extensibility
and the bad maintainability. Bug Fixing or the addition of
new features means a recompilation of the whole kernel.

Monolithic Kernel

Micro Kernel

• To overcome these limitations of extensibility and
maintainability, the idea of micro kernels appeared at the
end of the 1980's.

• The concept was to reduce the kernel to basic process
communication and I/O control, and let the other system
services reside in user space in form of normal processes
(as so called servers).

• There is a server for managing memory issues, one server
does process management, another one manages drivers,
and so on.

Micro Kernel

Ack: Benjamin Roch and TU Wien

System Calls

• $ vi /usr/src/linux/arch/i386/kernel/entry.S
• Library functions will call internally a system call.

Every system call has a +ve integer number and
will be executed in Kernel mode.

• For example - printf C library function calls
internally write system call.

• Information about System Calls, refer
man 2 <system call name>

Steps in Making a System Call

read (fd, buffer, nbytes);

Steps to Perform read ()

Ack to Linux Magazine and A Rubini

File Management

• The basic model of I/O system is a sequence of bytes
(and there are no file format) that can be accessed
either randomly, or sequentially.

• The I/O system is visible to a user process as a
stream of bytes (I/O stream). A Linux process uses
descriptors to refer I/O streams.

File Descriptor (fd)

• The system calls related to the
I/O system take a descriptor as
an argument to handle a file.

• The descriptor is a positive
integer number.

• If a file open is not successful,
fd returns -1.

• Linux supports different types
of files.

fd table

0 - stdin

1 - stdout
2 - stderr
3 - file1
4 - file2

File Descriptor (fd)

Descriptor Table Process 2

0 - stdin 0 - stdin

1 - stdout 1 - stdout
2 - stderr 2 - stderr
3 - file1 3 - file1
4 - file2 4 - file3

File 1

File 2 File 3

Terminal-1Term-2

Descriptor Table Process 1

$man fs lists the familiar file systems with brief description

The term file system refers to –
• Some code in the kernel that is activated in response to

a program using file I/O system calls (such as open, read,
write, close etc). In other words, file system facilitates file
related system calls.

• A set of data structures (such as I-node table, mounted
file systems table etc.) used to track the usage of a
device.

File Management –File Systems

File Systems
A file system enables storage of –

– names of ordinary files and directories

– the data contained in ordinary files and
directories

– the names of device special files

File Systems - Creating

When a file system is created, Linux creates a
number of blocks on that device. These blocks are

B S inode table Data blocks

Boot block contains bootstrap code, which is used
when the system is booting.

File Systems – Super block

• Each device also contains more than one copies
of the super-block- as the super-block contains
information that must be available to use the
device.

• If the original super-block is corrupt, an alternate
super-block can be used to mount the file
system.

File Systems - Superblock

• The super-block contains info. such as:

– a bitmap of blocks on the device, each bit
specifies whether a block is free or in use.

– the size of a data block
– the count of entries in the I-node table
– the date and time when the file system was

last checked
– the date and time when the file system was

last backed up

File Systems – I-node table

• The I-node table contains an entry for each file
stored in the file system. The total number of I-
nodes in a file system determine the number of
files that a file system can contain.

• When a file system is created, the I-node for the
root directory of the file system is automatically
created.

File Systems – I-node table

Each I-node contains following info:
–file owner UID and GID
–file type and access permissions
–date/time the file was created, last modified,

last accessed
–size of the file
–number of hard links to the file
–Each I-node entry can track a very large file

A device special file describes following
characteristics of a device :

– Device name
– Device type (block device or character device)
– Major device number
– Minor device number

• Each file system must be mounted before it can
be used. Normally, all file systems are mounted
during system startup.

Device Special Files

• Each file is located on a file system. Each file
system is created on a device, and associated
with a device special file.

• Therefore, when you use a file, UNIX can find
out which device special file is associated with
that file and send your request to a particular
device driver.

Device Special Files

• The “dev” directory contains names of each
device special file. Therefore each device
special file name is also stored in a device.

• A file system is mounted typically under an
empty directory. This directory is called the
“mount point” for the file system.

FS - Mounting

• You can use mount command to find how
many file systems are mounted, and what is the
mount point for each file system :

$ mount
/dev/hda2 on / type ext2 (rw)
none on /proc type proc (rw)

FS- Mounting

FS– Internal Routines

• The file system contains a number of internal
support routines that are used for accessing a
file.
– namei()
– iget() / iput()
– bread()
– bwrite()
– getblk()

Buffer Cache

• The file system also maintains a buffer cache.

• The buffer cache is stored in physical memory
(non-paged memory).

• The buffer cache is used to store any data that is
read from or written to a block-device such as a
hard-disk, floppy disk or CD-ROM.

Buffer Cache
If data is not present in buffer cache:

– the system allocates a free buffer in buffer cache
– reads the data from the disk
– stores the data in the buffer cache.

If there is no free buffer in the buffer cache:
– the system selects a used buffer
– writes it to the disk
– marks the buffer as free
– allocates it for the requesting process.

Buffer Cache
• While all this is going on, the requesting process

is put to wait state.

• Once a free buffer is allocated and data is read
from disk into buffer cache, the process is
resumed.

• A process can use the sync() system call to tell
the system that any changes made by itself in
the buffer cache must be written to the disk.

File I/O –System Calls

System calls for file I/O

– open - To open or create a file
– read,write - To perform file I/O
– lseek - To seek to a location in the file
– close - To close an open file
– dup,dup2 - To duplicate the file descriptors
– fcntl - File control
– stat - To obtain information about a file

Lab Exercise –Day 1

1.Write a program to copy the content of a file to another using
read and write system calls.

2.Write a program to open a file in read only mode. Read line by
line from the file. Display each line as it is read. Close the file
when end-of-file is reached.

3.Write a program to read from the standard input and display on
standard output.

4. Using lstat system call display the contents of inode no , block
size of a file……..

5.Using lstat system call check the type of file.

LINUX Internals

DAY -2

Process
Management

Introduction to Process

• A process can be thought of as a program
in execution

• Process also include PC and all CPU
registers as well as the process stacks
containing temporary data

• During the lifetime of a process it will use
many resources

• Os should keep track of the processes to ensure
that the system resources are shared fairly.

• Most precious resource is CPU. Since UNIX is a
multiprocessing OS, its main objective is to have
maximum CPU utilization

Introduction to Process

Dual Modes

• In order to run Linux, the computer hardware must
provide two modes of execution: User and Kernel.

• Each process has virtual address space, references to
virtual memory are translated to physical memory
locations using set of address translation maps

• When current process yields CPU to another process (a
context switch), the kernel loads these registers with
pointers to translation of new process

Per-process Objects

• There are two important per-process objects
* uarea (user area) – is a data structure that

contains information about a process of interest to
the kernel, such as a table of files opened by the
process, identification information, and saved
values of the process registers when the process is
not running

* kernel stack – to keep track of its function call
sequence when executing in the kernel
Both u area and kernel stack, while being per-
process entities in the process space, are owned by
the kernel

Context of a Process

• The UNIX kernel is reentrant

• Kernel functions may execute either in process
context or in system context

• User code runs in user mode and process
context, and can access only the process space

• System calls and exceptions are handled in
kernel mode but in process context, and may
access process and system space

• Interrupts and system wide tasks are handled in
kernel mode and system context, and must only
access system space

Context of a Process

Process Structure

• In order to manage the processes in the system,
each process is represented by a task_struct
data structure

• The task vector is an array of pointers to every
task_struct data structure in the system.

• task_struct is quite large and complex

Process State

As a process executes it changes state
according to its circumstances. Standard UNIX
processes have the following states:

• Ready
• Running
• Wait
• stopped
• Zombie
• Exit

stopped

Stopped

+ Asleep

Process -state transition

Identifiers

• Every process in the system has a process identifier.

• Each process also has User and group
identifiers, these are used to control this
processes access to the files and devices in
the system

• ppid, pid, uid, gid, euid, egid

init - shell

• In Linux no process is independent of any other
process

• Every process in the system, except the initial
process has a parent process

• New processes are not created, they are copied,
or rather cloned from previous processes

init getty login shell

Times and Timers

• The kernel keeps track of a processes creation time
as well as the CPU time that it consumes during its
lifetime

• Each clock tick, the kernel updates the amount of time
that the current process has spent in system and in
user mode

• UNIX also supports process specific interval timers,
processes can use system calls to set up timers to
send signals to themselves when the timers expire

• scheduler that must select the most deserving
process to run out of all of the processes in
the ready to run queue. The traditional UNIX
scheduler uses preemptive round-robin
scheduling

• Scheduling priorities have integer values
between 0 and 140, with smaller numbers
meaning higher priorities

Process Scheduling

Process Scheduling

• For the scheduler keeps information in the task_struct for
each process

• policy This is the scheduling policy that will be applied to this
process.

• priority This is the priority that the scheduler will give to this
process.

• rt_priority Linux supports real time processes and these are
scheduled to have a higher priority than all of the other non-
real time processes in system.

• counter This is the amount of time that this process is
allowed to run for.

Creating a new process

• fork() system call creates a new process

• All statements after the fork() system call in your
program are executed by two processes

• If fork () returns 0 it is a child process else if > 0 it is
parent process else (-1) error

• A parent process can use the wait() system call to
wait for the exit of any child process

Process Creation

• Resource sharing
– Parent and children share all resources
– Children share subset of parent’s resources
– Parent and child share no resources

• Execution
– Parent and children execute concurrently
– Parent waits until children terminate

• Address space
– Child duplicate of parent
– Child has a program loaded into it

exec – to run a program

To run a new program in a process, use one of the
“exec” family of calls
– pathname of the program to run
– name of the program
– each parameter to the program
– (char *)0 as the last parameter to specify end of

parameter list

fork () demo

Process Image

User context Kernel context
Kernel data

$ size a.out (man size)

text data bss dec hex filename
920 268 24 1212 4bc a.out

Signal Handling

Signals -Introduction

• Signals are requests sent to a process, causing
it to divert its execution to do something else

• Signals are software interrupts

• Signals provide a way of handling synchronous
or asynchronous events depends on its nature

• Each signal has an integer number

• Symbolic name is defined in the file
/usr/include/bits/signum.h

• Refer $man 7 signal

• $kill –l

Signals -Introduction

List of Signals

[raju@linux62 raju]$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS

Signal Generation

Kernel generates signals to process in response to
various events. Some major sources of signals are:

• Exceptions
• other process
• Terminal interrupts
• Job control
• Quotas
• Notifications
• Alarms

• When the signal is sent to the process, the
operating system stops the execution of the
process, and "forces" it to call the signal handler
function

• Each signal has a default signal handler, which is
a function that gets called when the process
receives that signal

Signal Handling

• Catch the Signal: instead of executing a
default signal handler, the control should
execute a given signal handler.

• Two signals SIGSTOP and SIGKILL cannot
catch, they cause the process to terminate
immediately. This is useful when debugging
programs whose behavior depends on timing.

Signal Handling

• Signals are very similar to hardware interrupts
in their behavior

• The difference is that while interrupts are sent
to the operating system by the hardware. For
example: clock interrupt, page fault, device
interrupt

• Signals are sent to the process by the
operating system, or by other processes

Signal Vs Interrupt

• signal (int signum, sighandler_t handler);

• The signal() system call is used to modify a
default action of a specified signal

• signal() accepts a signal number and a pointer
to a signal handler function

Signal System Call

Kill –System Call

• Sending a given signal to the specified
pid.

• int kill(pid_t pid, int sig);

• The kill () system call is used to send a
given signal to the specified
process(es). It accepts two arguments,
signal and pid

signal (SIGINT, (void *) our_handler);

kill (SIGINT, pid);

SIG_IGN

Causes the process to ignore the specified
signal.

SIG_DFL

Causes the system to set the default signal
handler for the given signal

Pre-defined Handlers

Lab Exercise –Day 2

1.Write a C program to create a child process and let the two
process update the same file ?

2.Create child process and let the child execute one of your C
program?

3.Write a C program to create zombie and orphan process?

4.Using system calls wait for a specific child in a parent process?

5.Write a C program to handle divide by zero , Ctrl C and
SIGSEGV.

6.Write a C program to send SIGINT from one process to other.

LINUX Internals

Day 3

User Level Threads

LINUX Internals

POSIX Threads

• Thread is a sequential flow of control through a
program

• If a thread is created, it will execute a specified
function

Two type of threading:
1. Single Threading
2. Multi threading

All threads within a process share

1. process instructions

2. address space, data

3. Open files (example: file descriptors)

4. Signal Handlers

5. Current working directory, uid and gid

POSIX ThreadsPOSIX Threads

Each thread has its own

1. Thread id

2. set of registers, pc, sp

3. stack (for local variables and return
addresses)

POSIX ThreadsPOSIX Threads

Advantages of Threads

1. It takes less time to create a new thread in a
process

2. It takes less time to terminate a thread than a
process

3. It takes less time to switch between two
threads within the same process

4. Communication between threads are easier.

POSIX ThreadsPOSIX Threads

There are two broad categories of
thread implementation:

1. User level Threads (ULT)

2. Kernel level threads (or kernel-supported
threads or Light weight processes)

POSIX ThreadsPOSIX Threads

#include <pthread.h>

Thread management is done by the application
and the kernel is not aware of the existence of
threads

Thread library contains code for creating and
destroying threads, passing messages and data
between threads, for scheduling thread execution
and for saving and restoring thread contexts

POSIX ThreadsPOSIX Threads

• This thread application are allocated to a single
process managed by the kernel

• All the activity takes place in user space and
within a single process. kernel is unaware of this
activity; the kernel continues to schedule the
process as a unit and assigns a single execution
state to that process

POSIX ThreadsPOSIX Threads

• Advantages:

Thread switching does not require kernel mode,
Scheduling can be application specific and can run
on any OS

• Disadvantage:

When it executes a system call, not only is that
thread is blocked, but all the threads within the
process are blocked

POSIX ThreadsPOSIX Threads

• Kernel Level Threads

Thread management is done by the kernel

Advantage: If one thread in a process is blocked,
kernel can schedule another thread of the same
process.

Disadvantage: Transfer of control from one thread to
another within the same process requires a mode
switch to the kernel

Kernel ThreadsKernel Threads

• Comparison of creation and synchronization time of
ULT, LWP & Process

CREATION TIME SYNCHRONIZATION TIME
(µ sec) (µ sec)

• ULT 52 66
• LWP 350 390
• Process 1700 200

Threads –ComparisonThreads –Comparison

• Improve application responsiveness
• Use multiprocessors more efficiently
• Improve program structure
• use fewer system resources
• Specific applications in uniprocessor machines

Applications
• A file server on a LAN
• Graphical User Interfaces (GUIs)
• web applications

Threads -ApplicationsThreads -Applications

Threads –OS implementation

one process
one thread

multiple processes
one thread per process

one process
multiple threads

multiple processes
multiple threads per process

Thread Usage

A word processor with three threads

#include <pthread.h>

void thread_function (void) {

printf (“ Hello POSIX Thread\n”);

}

main () {

pthread_t mythread;

pthread_create (&mythread, NULL, thread_function, NULL);

}

$cc thread.c -lpthread

Hello Thread Example

Primitive IPC

IPC - Introduction

• Traditionally this term described different ways
of message passing between different
processes

• A complex programming environment often
multiple processes must communicate with each
other and share some resources and information

• Interprocess interactions have several distinct
purposes:

* Data transfer * Sharing data
* Event notification * Resource sharing

* Process control

IPC - Introduction

IPC Mechanisms

Primitive IPC
• Pipe
• FIFO

System V IPC
• Message Queues
• Shared Memory
• Semaphores

process

File system

termination of a process or
closes the ipc object

Exists until kernel reboots
or IPC object is explicitly

deleted

Until the object is
explicitly deleted

kernel

Persistence of IPC Objects

Unnamed Pipe

PIPE -Introduction

A pipe is a set of two file descriptors. A pipe allows
two related processes to communicate by sending
some data from one process to another process.

The processes must co-operate and assume the role
of a reader or a writer with respect to a specific pipe.
Data is passed in order.
Data doesn’t get lost in middle.
Zero buffering capacity

PIPE : Example

Client Server File

Path Name

File Content or Error

Message

STDIN

STDOUT

Client - Server

pipe –System Call

• A process (parent process) creates a pipe
using the pipe() system call and passes an
array of two integers (file descriptors).

• Another process can use the pipe, provided it
has access to the above file descriptors. This
is possible if another process is the child of the
first process, and it was created after the pipe
was created.

• int fd[2]; pipe (fd); fd[0] and fd[1]

• Create pipe (fd[0] and fd[1])
• Parent closes read end of pipe (fd[0])
• Child closes write end of pipe (fd[1]).
• The read and write system calls are blocking calls .

Meaning that the reading process will wait when
there is no data in the pipe and the writing process
will wait when there is no reading process.

PIPE –unidirectional flow

Pipe in a single process after fork

Parent Child

fork

pipe

kernel

fd[0] fd[1]fd[0] fd[1]

PIPE - visualization

Parent Child

pipe

kernel

Fd[0]Fd[1]

PIPE - visualizationPIPE - visualization

Pipe from parent to child

• Create pipe1 (fd1[0] and fd1[1]
create pipe2 (fd2[0] and fd2[1])

• parent closes read end of pipe1 (fd1[0])
• parent closes write end of pipe2 (fd2[1])

• child closes write end of pipe1 (fd1[1])
• child closes read end of pipe2 (fd2[0])

PIPE – bi directional flow

Pipe2

Parent Child

Pipe1

fd2[0]
fd1[1] fd1[0]

fd2[1]

Flow of data

Flow of data

PIPE – bi directional flowPIPE – bi directional flow

FIFO – Named Pipe

Pipes were the first widely used form of IPC,
available both within programs and from the shell

The problem with pipes is that they are usable
only between processes that have a common
ancestor (i.e., a parent-child relationship)

If we want to communicate between unrelated
processes, we have to use FIFO – the named pipe

FIFO - Introduction

FIFO Basic concepts

• Named pipe works much like a regular pipe, but
does have some noticeable differences

• Named pipes exist as a device special file in the file
system

• Processes of different ancestry can share data
through a named pipe

• When all I/O is done by sharing processes, the
named pipe remains in the file system for later use

Creating FIFO

Methods of creating named pipes from the shell
$mknod MYFIFO p (OR) $mkfifo MYFIFO

To create a FIFO within a C program, we can
make use of the mknod() system call:

int mknod (char *pathname, mode_t mode,
dev_t dev);

• ex: mknod ("/tmp/MYFIFO", S_IFIFO|0666,
0);

FIFO

• Once a named pipe is created each process has
to open the named pipe using the open() system
call

• One process can open the named pipe for
reading, the other can open it for writing etc. To
read from named pipe, process can use read()
system call and to write to it, it can use the
write() system call

FIFO -Limitation
• The system-imposed limits on pipes and FIFOs

are:

OPEN_MAX : The maximum no. of descriptors
opened at any time by a process

PIPE_BUF : The max. amount of data that
can be written to a pipe or FIFO atomically

FIFO - Limitations

• Half duplex; cannot use across network
• They are less secure than pipes, since any

process with right privileges can access them
• While reading data is removed from the pipe,

pipe cannot be used for broadcast data to
multiple receivers

• Data in a pipe is treated as a byte stream and
has no knowledge about message boundaries

Lab Exercise –Day 3

1.Write a C program to perform communication
between first child and second child of the parent
using pipes.

2.Establish bi- directional communication between
parent and child using pipes

3.Write a C program to implement ls -l|wc -l using
pipes.

4.Using FIFOS establish communication between
unrelated processes.

LINUX Internals

Day 4

System V IPC

Sys V IPC - Introduction

• Pipes and FIFOs do not satisfy the IPC
requirements of many applications

• System V IPC provided three mechanisms namely

message queues

shared memory

Semaphores,

• The IPCs objects are created in the kernel
level

• Process can acquire the resource by
making a shmget, semget or msgget
system call

• Several control commands can be
issued by control system call (shmctl,
semctl or msgctl)

Sys V IPC - Introduction

• The ipc_perm structure contains the common
attributes of the resources (the key, creator and
owner IDs and permission)

• Each IPC resource must be explicitly deallocated by
the IPC_RMID command from the command line or
using (- ctl) statement to delete the entry from the
kernel otherwise, it will persist until reboot the
system

Sys V IPC - Introduction

• To get information about the IPCs entries: use
$ipcs command from the shell

• To get more theoretical information about IPCs
refer
$man 5,2 ipc,
$man 8 ipcrm, ipcs

Sys V IPC - Introduction

Message Queues

Message queues

msqid xxx
mtype x1

mtype x2

mtype x3

mtype x4

mtype x5

mtype xn

msg text
msg text

msg text

msg text

msg text

msg text

MQ - Internal

p

p

p

p

msg msg msg
Message
read from
head

New Messages

added at tail

Stuct

msgqid_ds p

Message Queue id

• msgget () system call will create a message queue
and it returns to the message queue id

msqid = int msgget (key_t key, int msgflg);

• key is the system wide unique identifier
key_t ftok (const char *path, int id);

• msgflg is the permission of the queue and it should
be OR’d with IPC_CREAT flag for IPC objects

Message Q structure

• Each message is made of two parts, Which is
defined in template structure struct msgbuf, as
defined in <sys/msg.h>

struct msgbuf {
long mtype;
char mtext[1];

};
• We can use our own structure but the first member

of the structure should be long int

mq - sending

• Message send system call is used to pass the
message to the queue

• msgsnd (int msqid, const void *msgp, size_t
msgsz, int msgflg);

• msgflg allows user to set optional parameters
either zero or IPC_NOWAIT

mq - receiving

msgrcv () system call is used to retrieve the
message from the queue

int msgrcv (int msqid, void *msgp, size_t msgsz,
long mtype, int msgflg);

If mtype is
0 - retrive the next message in the queue
+ve - get the mesg with an mtype equal to

the specified msgtyp

mq - pseudo code

• key = ftok (“.“, ‘a‘);
• msqid = msgget (key, IPC_CREAT|0666);
• msgsnd (msqid, &struct, sizeof (struct), 0);
• msgrcv (msqid, &struct, sizeof (struct), mtype,

0);
• msgctl (msgid, IPC_RMID, NULL);

• $ipcrm msg msqid

mq - Limitations

$ipcs –lq

------ Messages: Limits --------

max queues system wide = 16
max size of message (bytes) = 8192
default max size of queue (bytes) = 16384

Shared Memory

Shared Memory

• Shared memory, as the name implies, allows
two or more processes, which have the
appropriate permissions, to read and/or write to
the same area of memory

• The distinguishing features of shared memory
as an IPC mechanism are speed, flexibility and
ease of use

• Example of a shared memory: editors or word
processors in multi user environment

• Shared memory is a much faster method of
communication than either semaphores or message
queues

• Data does not need to be copied to a kernel buffer
and back again. Accessing shared memory takes as
much time as a normal memory access

• Using shared memory is quite easy. After a shared
memory segment is set up, it is manipulated exactly
like any other memory area

Shared Memory

The steps involved to create shared memory are
– Creating shared memory
– Connecting to the memory & obtaining a

pointer to the memory
– Reading/Writing & changing access mode to

the memory
– Detaching from memory
– Deleting the shared segment

Shared Memory

Shared Memory

OS

Physical Memory

Shared Memory

OS

Shm size

shmid
Physical Memory

OS

Shm size

shmidpointer

Physical Memory

Shared Memory

shm – pseudo code

shmid = shmget (key, SHM_SIZE, 0644 | IPC_CREAT);

void *shmat (int shmid, void *shmaddr, int shmflg);
if the shm is read only pass SHM_RDONLY else 0

(void *)data = shmat (shmid, (void *)0, 0);
int shmdt (void *shmaddr);
int shmctl (shmid, IPC_RMID, NULL);

shm - Limitations

• $ipcs –lm

------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 32768
max total shared memory (kbytes) = 8388608
min seg size (bytes) = 1

Semaphore

Semaphores

Synchronization Tool

An Integer Number

P () And V () Operators

Avoid Busy Waiting

Types of Semaphore

Semaphores

• If a process wants to use the shared object, it will
“lock” it by asking the semaphore to decrement the
counter

• Depending upon the current value of the counter, the
semaphore will either be able to carry out this
operation, or will have to wait until the operation
becomes possible

• The current value of counter is >0, the decrement
operation will be possible. Otherwise, the process will
have to wait

Semaphores

• System V semaphore provides a semaphore
set - that can include a number of
semaphores. It is up to user to decide the
number of semaphores in the set

• Each semaphore in the set can be a binary
or a counting semaphore. Each semaphore
can be used to control access to one
resource - by changing the value of
semaphore count

Semaphore - Initialization

union semun {
int val; // value for SETVAL
struct semid_ds *buf; // buffer for IPC_STAT, IPC_SET
unsigned short int *array; // array for GETALL, SETALL
struct seminfo *__buf; //buffer for IPC_INFO

};
union semun arg;

semid = semget (key, 1, IPC_CREAT | 0644);

arg.val = 1;
1 for binary
else > 1 for Counting Semaphore

semctl (semid, 0, SETVAL, arg);

Semaphore - Initialization

Semaphore - Implementation

struct sembuf {
short sem_num; /* semaphore number: 0 means first */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

struct sembuf buf = {0, -1, 0}; /* (-1 + previous value) */

semid = semget (key, 1, 0);
semop (semid, &buf, 1); /* locked */

-----Critical section--------

buf.sem_op = 1;
semop (semid, &buf, 1); /* unlocked */

Semaphore - Implementation

Semaphore Limitations

$ipcs -ls

------ Semaphore Limits --------
max number of arrays = 128
max semaphores per array = 250
max semaphores system wide = 32000
max ops per semop call = 32
semaphore max value = 32767

Lab Exercise –Day 4

1.Write a C program to retrieve the specific message
from the message queue.

2.Write a C program to display the old message in the
shared memory and update the new message
whenever new process acquire the shared
memory.

3.Perform file locking on a file using semaphores.

Summary
• Linux Kernel
• System Calls
• File Management
• Process Management
• Signals
• User Level Threads
• IPC Primitives: Pipe and FIFO
• System V IPC: MQ, Shm and Sem

1. The design of the UNIX operating System by M. J. Bach

2. UNIX Internals by Uresh Vahalia

3. Advanced Programming in the UNIX Environment by
W. Richard Stevens

4. Unix Network programming by W. Richard Stevens

5. Understanding the Linux Kernel by D. P. Bovet,M. Cesati

6. http://www.ecst.csuchico.edu/~beej/guide/

References

LINUX Internals

DAY 5

Advanced topics in Embedded
Linux

• Overview of Embedded Linux
• Embedded Linux Application
• Comparison
• Advantages
• Hands on exercises
• Projects
• Q&A

Overview of embedded Linux
• Embedded Linux is the designation for Linux-based

operating systems that are used as
– Cell phones
– Personal digital assitants
– Media player handsets
– Consumer electronic devices etc.

• Other embedded applications too…
– Networking equipment
– Machine control
– Industrial automation
– Navigation equipment

Comparison
• Embedded Linux can be characterized as

different from desktop and server versions of
Linux

• Limited resources in terms of RAM, secondary
storage

• Frequently involves flashdisk based memories
instead of hard disks

• Embedded Linux is tailor made specific to
required application and target hardware

• Optimizations are done in order to make the OS
Real Time OS (RTOS)

Advantages of Embedded Linux

• the source code can be modified and
redistributed

• relatively small footprint (a typical installation
may require less than two megabytes of
memory)

• no royalty or licensing costs
• mature and stable

• large support base

References

• The Embedded Linux Consortium
http://www.linux-
foundation.org/en/ELC/ELCPS

• The Linux Kernel FAQs
– http://www.faqs.org

