|) i
Linux Internals.
e
- -
~_ ' i

S

> -«

i, Beoting

I BUldiRethe tnux Kemelllimage

2 Bepling T @VeRiew

SRS Booling: BIOS POSH

s LA Beoling: Pooisecior and setup

1.5 Using LIC®ras a bootloader

s PoiEIghrievelinpitialisation

e SIVIP Booliup on x86

LB Ereeing initialisation data and code

1.9 Processing kernel command line

1.4 Building the Linux Kernel Image

We discuss building specific to x86 architecture

When the user types ‘'make zlmage' or 'make bzlmage' the resulting
bootable kernel image is stored as arch/i386/boot/zImage or
arch/i386/boot/bzlmage respectively.

The size of the bootsector is always 512 bytes

The upper limit on the bzlmage size produced at this step is about
2.5M for booting with LILO

It is easy to build a broken kernel by just adding some large ".space”
at the end of setup.S.

1.2 Booling: Overview

Process steps for Intel 32 bit architectures
BIOS selects the boot device.
BIOS loads the bootsector from the boot device.

Bootsector loads setup, decompression routines and compressed
kernel image.

The kernel Is uncompressed in protected mode.
Low-level initialisation is performed by asm code.
High-level C initialisation.

1.3 Booeting: BIOS POS It

The power supply starts the clock generator and asserts #POWERGOOD
signal on the bus.

CPU #RESET line is asserted (CPU now in real 8086 mode).

Y%0ds=%es=%1fs=%Qgs=%ss=0, %cs=0xFFFF0000,%eip = 0x0000FFFO
(ROM BIOS POST code).

Al POST checks are performed with interrupts disabled.
IVT (Interrupt Vector Table) initialised at address 0.

The BIOS Bootstrap LLoader function is invoked via int 0x19, with %dl
containing the boot device ‘drive number'. This loads track 0, sector 1 at
physical address 0x7C00 (0x07C0:0000).

1.4 Booting: bootsector and setup

« Jhe bootsector used to boot Linux kernel could be either:

= Linux bootsector (arch/i386/boot/bootsect.S),
» LILO (or other bootloader's) bootsector, or

= no bootsector (loadlin etc)

* actual code Is In bootsect.s

1.5 Usingl LILO as a bootioader

. There are several advantages in using a specialised
bootloader (LILO) over a bare bones Linux bootsector:

« Ability to choose between multiple Linux kernels or even multiple
OSes.

= Ability to pass kernel command line parameters (there is a patch
called BCP that adds this ability to bare-bones
bootsector+setup).

= Abllity to load much larger bzlmage kernels - up to 2.5M vs 1M.

1.6/ High levellnitialization

By “high-levellinitialisation™ we consider anything whichiis not
directly related to bootstrap

* The following| steps are performed:
= Initialise segment values (%ds = %es = %fs = %gs = KERNEL DS = 0x18).
= Initialise page tables.
= Enable paging by setting PG bit in; %crO.
= Zero-clean BSS (on SMP, only first CPU does this).
= Copy the first 2k of bootup parameters (kernel commandline).

= Check CPU type using EFLLAGS and, if possible, cpuid, able to detect 386 and
higher.

= [The first CPU calls start_kernel()

1.7 SIVIP' Bootup on X686

* The steps for Symmetric Multiprocessing Boot are the following

= On SMP; the BP goes through the normal sequence of bootsector,
setup etc until it reaches the start_kernel(), and then on to smp_init()

= IThe smp_boot cpus() goes in a loop for each apicid (until NR_CPUS)
and calls do._boot_cpul()

» [Ihe boot CPU creates a copy of trampoline code for each CPU in low
memory.

= ['he trampoline code simply sets %bx register to 1, enters protected
mode and jumps to startup_32

1.6/ Freeing initialization data and code

« When the operating system initialises itself, most of the
code andidata structures are never needed again

* Linux provides two macros to be used:
= Init - for initialisation code
= _Initdata - for data

* There are two more macros which work in a similar

manner, called exit and __ exitdata

1.9/ Precessing kernellcommand line

TThe following are the steps to process the command line

= LIEO (or BCP) accepts the commandline using BIOS keyboard services and
stores it at a well-knownilocation in physical memory, as well as a signature
saying that there is a valid commandline there.

= arch/i386/kernel/lhead.S copies the first 2k of it out to the zeropage.

= arch/i386/kernel/setup.c:parse_mem,_cmdline() (called by setup_arch(), itself
called by start_kernel()) copies 256 bytes from zeropage into
saved _command_line which is displayed by /proc/cmdline.

= We return to commandline in parse_options() (called by start_kernel()) which
processes some "in-kernel” parameters (currently "init=" and
environment/arguments for init) and passes each word to checksetup().

= checksetup() goes through the code in ELF section .setup.init and invokes each
function, passing it the word if it matches

2. Process and Interrupt
Management

«. 2.1 Task Structure and Process. Table

w7 Creation and termination of tasks and
kernel threads

« 2 3 Linux Scheduler
22450 R0x linked list iImplementation
@ 2.5 Wait Queues

2.1 Trask Structure and Process Table

* Every process under Linux Is dynamically
allocated a struct task_struct structure

* TThe maximum number of processes which can
be created on Linux is limited only by the
amount of physical memory

* The set of processes on the Linux system is
represented as a collection of struct task _struct
structures which are linked in two ways:

= as a hashtable, hashed by pid, and

= as a circular, doubly-linked list using p->next_task
and p->prev_task pointers.

2.2 Creation and termination of tasks and
kernel threads

Under Linux, there are three kinds of processes:
» [he idle thread(s),
= kernel threads,
= Uuser tasks.
The idle thread is created at compile time for the first CPU; it is then

“manually™ created for each CPU by means of arch-specific
fork_by hand()

User tasks are created by means of clone(2) or fork(2) system calls
There are several ways for tasks to terminate:

= by making exit(2) system call;

= by being delivered a signal with default disposition to die;

= by being forced to die under certain exceptions;
= by calling bdflush(2) with func ==

2.3 Linux Scheduler

TThe job ofi ai scheduler is to arbitrate access to the current CPU between
multiple processes

The fields of task structure relevant to scheduler include

p->need_resched: this field is set if schedule() should be invoked
at the ‘nmext opportunity’.

p->counter: number of clock ticks left to run in this scheduling
slice, decremented by a timer. When this field becomes lower
than or equal to zero, it Is reset to 0 and p->need_resched Is set.
This is also sometimes called ‘dynamic priority' of a process
because it can change by itself.

p->priority: the process' static priority, only changed through
well-known system calls like nice(2), POSIX.1b
sched_setparam(2) or 4.4BSD/SVR4 setpriority(2).
p->rt_priority: realtime priority

p->policy: the scheduling policy, specifies which scheduling
class the task belongs to

2.4 Linux linked list iImplementation

* Before we go on to examine implementation of walit
gueues, we must acquaint ourselves with the Linux
standard doubly-linked list implementation

* The fundamental data structure here is struct list_head

* struct list_head
{

struct list_head *next, *prev;

;

2.5 Wait Queues

« When a process requests the kernel to do something which is currently

Impossible but that may become possible later, the process is put to sleep
and is,woken up when the request is more likely to be satisfied. One of the
kernel mechanisms used for this is called a ‘'wait queue'.

you can define your own waitqueue and use

add/remove_wait_queue to add and remove yourself
from it

wake_up/wake_up. interruptible can be used to wake up
when needed

An example of autonomous waitqueue usage is
Interaction between user process requesting data via

read(2) system call

3. Virtual Filesystem (VFS)

=S iNineder@aches and Interaction With

DEACHE

. 15.2

esysiemReqgistration/Unregistration

. 3.3

lerDescrptor Vianagement

3.4

lerStuciure VManagement

#3830 Superblock and Mountpoint

NVanagement

3.1 Inode Caches and Interaction
with Dcache

* In order to support multiple filesystems, Linux contains a
special kernel interface level called VES (Virtual

Filesystem Switch).

* Linux inode cache is implemented in a single file,
fs/inede.c, which consists of 977 lines of code

« The type lists are anchored from inode->i_list, the
hashtable fromi inode->1_hash

All'these lists are protected by a single spinlock:
Inode_lock.

3.2 Fllesystem
[Registration/Unregistration

« The Linux kernel provides a mechanism for new
filesystems, to be written with minimum effort

« All that is needed is to fill in a struct file_system_type
structure and register it with the VFS using the
register_filesystem()

The job of the read_super() function is to fill in the fields
of the superblock, allocate root inode and initialise any
fs-private information associated with this mounted
Instance of the filesystem

3.9 File Descriptor Management

Under Linux there are several levels of indirection between user file

descriptor and the kernel inode structure

« \When a process makes open(2) system call, the kernel returns a
small non-negative integer which can be used for subsequent I/O
operations on this file.

This integer is an index into an array of pointers to struct file
« Eachfile structure points to a dentry via file->f_dentry
* And each dentry points to an inode via dentry->d_inode.

« Each task contains a field tsk->files which is a pointer to struct
files_struct

3.4 File Structure Management

« The file structure is declared in include/linux/fs.h
* | et us look at the various fields of struct file:
= T list , f dentry , f_vismnt , f flags etc

* file_operations structure which contains the methods that
can be invoked on files

3.9 Supernblock and Mountpoint
Vianagement

« Under Linux, information about mounted filesystems is
kept In two separate structures - super_block and

vismount
« struct super_block is declared' in include/linux/fs.h
. The various fields in the super_block structure are
= S list, s dev,s dirty, s files efc

* The superblock operations are described in the
Super_operations structure

4 1PC mechanisms

\
| ——

SEeMapnores

NS

Viessagerquen

(13
v

Shaedtiviemory: ’J

Linux [PC Primitives
B /

(€5

‘¢ L ¢
o1 1O 1O1 101

4.1 Semaphores

. The functions described in this section implement the
user level semaphore mechanisms
« System calls are...

= SYys_semget()
= Sys semocti()

= SYyS semop()

«. The following structures are used specifically for
semaphore support

« Struct sem_array
= Struct sembuf

4.2 Vlessage gqueues

« Vlessage System Call Interfaces
= SYyS msgget()
= SyS msgctl()
= SYyS _msgsnd()
= SYS_msgrcv()
* Message Specific Structures
» Struct msg_queue
=« Struct msqid_ds

4.5 Shared Vliemory

« Shared Memory System Call Interfaces
= SYyS shmget()
= Sys shmctl()
= SYS shmat()
= Sys shmdi()

. Shared Memory Support Structures

= Struct shm_info
= Struct shmid64 _ds

4.4 .inux IPC Primitives

« Generic Linux IPC Primitives used with Semaphores,

Messages,and Shared Memory
= Ipc_alloc()

= Ipc_addaid()

= Ipc_lock()

* Generic IPC Structures used with

Semaphores,Messages, and Shared Memory
= Struct kern_Iipc_perm
= struct ipc_id

Embedded Linux

Overview

« Embedded Linux is the designation for Linux-based
operatng systems that are used as
= Cell phones
= Personal digital assitants
= Media player handsets
= Consumer electronic devices etc.

« Other embedded applications too...
= Networking equipment
= Machine control
= Industrial automation
=« Navigation equipment

Differences

« Embedded Linux can be characterized as different from

desktop and server versions of Linux
« Limited resources in terms of RAM, secondary storage

* Freguently involves flashdisk based memories instead of
nard disks

« Embedded Linux Is tailor made specific to required
application and target hardware

Optimizations are done in order to make the OS Real
Time OS (RTOS)

Advantages

the source code can be modified and redistributed
« relatively small footprint (a typical installation may
require less than two megabytes of memory)

- no royalty or licensing costs
mature andi stable

large support base

fhe Linux Eoundation

* The Linux Foundation manages the ELC
Platform specification

« ELC Is Embedded Linux Consortium

* |t defines the set of standard interfaces to

e employed while developing embedded
Linux

System Enviroments

« Minimal System Environment: Requires no
user interaction. Only minor storage

* Intermediate System Enviroment: Adds
support for massive file storage,
Asynchronous /O etc

« Full System Environment: A Full,
multipurporse Linux

Enviroment Function Group Table

« R — Required, P'— Optional
(POSIX), L — Optional (LSB
1.2)

NGROLIFS kAKX

_POE_REGERF

POSE_READER WRITER LOCKS

_POSE WDISABLE

Envirenment Function Group Trable(2)

CHROMOUS_IO
ELC T LANG JUMP
ELC_C_LANG_MATH
ELC _C_LANG_SUPPORT
ELC_C_LANG_SUPPORT_R
ELC _C_LIB_EXT
ELC_DEWICE_IO

ELC DEYICE SPECIFIC

ELC_DEWICE_SPECIFIC_R

ELC DY MAMIC_LINKING

ELC_FD_MGMT

Interface Function Groups

Eachigroup's elements will be separated to indicate the
specification upon which they are based:

= POSIX.1-2001 is a reference to IEEE POSIX 1003.1-2001,
including Ratienale

s LSBA1.2 is a reference to Linux Standard Base Version 1.2.0
= SUSV3 is a reference to the Single UNIX Specification, Version 3

* [hreads
= LSB 1.2 Based
s POSIX Based

Feature Eunctions and Macros

A conforming implementation shall'make available an <elcstd.h>
header, defining the symbolic constants and types described in this

section. The actual values of the constants are unspecified except
as shown.

The following symbolic constants shall be defined in <elcstd.h>:
_ELCPS_VERSION

Long|integer value indicating version of ELCPS to which the
implementation conforms. For implementations conforming to this

particular version, the value shall be 200212L.

Constants

_ELCPS_MINIMAL_ENY

The implementation supports the Minirmal System Ernvironment. If this symbol has a value other than -1 or 0,
it shall have the value 2002121

_ELCPS_INTERMEDIATE_EMY

The implementation supports the Intermediate System Ermvironment. If this symboal has a value ather than -1
or 0, it shall have the value 2002121

_ELCPS_FULL_ENY

The implementation supports the Full System Environment. If this symboal has a value other than -1 or 0, it
shall hawve the value 2002121

_ELC_ASYNCHRONOUS IO

The implementation supports the Asynchronous YO interface group. Ifthis symbol has a value other than -1
or 0, it shall have the value 200212L.

_ELC_C_LANG_JUMP

The implementation supports the IS0 C Library Jump Functions interface group. If this symbal has a value
other than -1 or 0, it shall have the walue 200212L.

_ELC_C_LANG_MATH

The implementation supports the Math Functions interface graup. If this symbal has a value other than -1 aor
0, it shall have the value 200212L.

References

* The Embedded Linux Consortium

LR AAWEITRUXE
ielhdatienera/en/ELC/ELLCPS

* The Linux Kernel FAQs
= LR /AW, TGS, 0rg

