
Linux InternalsLinux Internals

1. Booting1. Booting
1.1 Building the Linux Kernel Image1.1 Building the Linux Kernel Image
1.2 Booting: Overview1.2 Booting: Overview
1.3 Booting: BIOS POST1.3 Booting: BIOS POST
1.4 Booting: 1.4 Booting: bootsectorbootsector and setupand setup
1.5 Using LILO as a 1.5 Using LILO as a bootloaderbootloader
1.6 High level 1.6 High level initialisationinitialisation
1.7 SMP 1.7 SMP BootupBootup on x86on x86
1.8 Freeing 1.8 Freeing initialisationinitialisation data and codedata and code
1.9 Processing kernel command line1.9 Processing kernel command line

1.1 Building the Linux Kernel Image1.1 Building the Linux Kernel Image
We discuss building specific to x86 architectureWe discuss building specific to x86 architecture

When the user types 'make When the user types 'make zImagezImage' or 'make ' or 'make bzImagebzImage' the resulting ' the resulting
bootable kernel image is stored as arch/i386/boot/zImage or bootable kernel image is stored as arch/i386/boot/zImage or
arch/i386/boot/bzImage respectively. arch/i386/boot/bzImage respectively.

The size of the The size of the bootsectorbootsector is always 512 bytesis always 512 bytes

The upper limit on the The upper limit on the bzImagebzImage size produced at this step is about size produced at this step is about
2.5M for booting with LILO 2.5M for booting with LILO

It is easy to build a broken kernel by just adding some large ".It is easy to build a broken kernel by just adding some large ".space" space"
at the end of at the end of setup.Ssetup.S. .

1.2 Booting: Overview 1.2 Booting: Overview
Process steps for Intel 32 bit architecturesProcess steps for Intel 32 bit architectures
BIOS selects the boot device. BIOS selects the boot device.
BIOS loads the BIOS loads the bootsectorbootsector from the boot device. from the boot device.
BootsectorBootsector loads setup, decompression routines and compressed loads setup, decompression routines and compressed
kernel image. kernel image.
The kernel is uncompressed in protected mode. The kernel is uncompressed in protected mode.
LowLow--level level initialisationinitialisation is performed by is performed by asmasm code. code.
HighHigh--level C level C initialisationinitialisation. .

1.3 Booting: BIOS POST 1.3 Booting: BIOS POST

The power supply starts the clock generator and asserts #POWERGOThe power supply starts the clock generator and asserts #POWERGOOD OD
signal on the bus. signal on the bus.
CPU #RESET line is asserted (CPU now in real 8086 mode). CPU #RESET line is asserted (CPU now in real 8086 mode).
%%dsds=%=%eses=%=%fsfs=%=%gsgs=%=%ssss=0, %=0, %cscs=0xFFFF0000,%eip = 0x0000FFF0 =0xFFFF0000,%eip = 0x0000FFF0
(ROM BIOS POST code). (ROM BIOS POST code).
All POST checks are performed with interrupts disabled. All POST checks are performed with interrupts disabled.
IVT (Interrupt Vector Table) IVT (Interrupt Vector Table) initialisedinitialised at address 0. at address 0.
The BIOS Bootstrap Loader function is invoked via The BIOS Bootstrap Loader function is invoked via intint 0x190x19, with %dl , with %dl
containing the boot device 'drive number'. This loads track 0, scontaining the boot device 'drive number'. This loads track 0, sector 1 at ector 1 at
physical address 0x7C00 (0x07C0:0000). physical address 0x7C00 (0x07C0:0000).

1.4 Booting: 1.4 Booting: bootsectorbootsector and setupand setup

The The bootsectorbootsector used to boot Linux kernel could be either: used to boot Linux kernel could be either:
Linux Linux bootsectorbootsector (arch/i386/boot/bootsect.S), (arch/i386/boot/bootsect.S),
LILO (or other LILO (or other bootloader'sbootloader's)) bootsectorbootsector, or, or

no no bootsectorbootsector ((loadlinloadlin etc)etc)

actual code is in actual code is in bootsect.sbootsect.s

1.5 Using LILO as a 1.5 Using LILO as a bootloaderbootloader

There are several advantages in using a There are several advantages in using a specialisedspecialised
bootloaderbootloader (LILO) over a bare bones Linux (LILO) over a bare bones Linux bootsectorbootsector: :

Ability to choose between multiple Linux kernels or even multiplAbility to choose between multiple Linux kernels or even multiple e
OSesOSes. .
Ability to pass kernel command line parameters (there is a patchAbility to pass kernel command line parameters (there is a patch
called BCP that adds this ability to barecalled BCP that adds this ability to bare--bones bones
bootsector+setupbootsector+setup).).
Ability to load much larger Ability to load much larger bzImagebzImage kernels kernels -- up to 2.5M up to 2.5M vsvs 1M. 1M.

1.6 High level initialization1.6 High level initialization

By "highBy "high--level level initialisationinitialisation" we consider anything which is not " we consider anything which is not
directly related to bootstrap directly related to bootstrap

The following steps are performed: The following steps are performed:
InitialiseInitialise segment values (%segment values (%dsds = %= %eses = %= %fsfs = %= %gsgs = __KERNEL_DS = 0x18). = __KERNEL_DS = 0x18).
InitialiseInitialise page tables. page tables.
Enable paging by setting PG bit in %cr0. Enable paging by setting PG bit in %cr0.
ZeroZero--clean BSS (on SMP, only first CPU does this). clean BSS (on SMP, only first CPU does this).
Copy the first 2k of Copy the first 2k of bootupbootup parameters (kernel parameters (kernel commandlinecommandline).).
Check CPU type using EFLAGS and, if possible, Check CPU type using EFLAGS and, if possible, cpuidcpuid, able to detect 386 and , able to detect 386 and
higher. higher.
The first CPU calls The first CPU calls start_kernelstart_kernel() ()

1.7 SMP 1.7 SMP BootupBootup on x86 on x86
The steps for Symmetric Multiprocessing Boot are the followingThe steps for Symmetric Multiprocessing Boot are the following

On SMP, the BP goes through the normal sequence of On SMP, the BP goes through the normal sequence of bootsectorbootsector, ,
setup etc until it reaches the setup etc until it reaches the start_kernelstart_kernel(), and then on to (), and then on to smp_initsmp_init() ()
The The smp_boot_cpussmp_boot_cpus() goes in a loop for each () goes in a loop for each apicidapicid (until NR_CPUS) (until NR_CPUS)
and calls and calls do_boot_cpudo_boot_cpu() ()
The boot CPU creates a copy of trampoline code for each CPU in lThe boot CPU creates a copy of trampoline code for each CPU in low ow
memory memory
The trampoline code simply sets %The trampoline code simply sets %bxbx register to 1, enters protected register to 1, enters protected
mode and jumps to startup_32 mode and jumps to startup_32

1.8 Freeing initialization data and code1.8 Freeing initialization data and code

When the operating system When the operating system initialisesinitialises itself, most of the itself, most of the
code and data structures are never needed againcode and data structures are never needed again
Linux provides two macros to be used: Linux provides two macros to be used:

__init __init -- for for initialisationinitialisation code code
____initdatainitdata -- for data for data

There are two more macros which work in a similar There are two more macros which work in a similar
manner, called __exit and __manner, called __exit and __exitdataexitdata

1.9 Processing kernel command line1.9 Processing kernel command line

The following are the steps to process the command lineThe following are the steps to process the command line

LILO (or BCP) accepts the LILO (or BCP) accepts the commandlinecommandline using BIOS keyboard services and using BIOS keyboard services and
stores it at a wellstores it at a well--known location in physical memory, as well as a signature known location in physical memory, as well as a signature
saying that there is a valid saying that there is a valid commandlinecommandline there. there.

arch/i386/kernel/head.S copies the first 2k of it out to the arch/i386/kernel/head.S copies the first 2k of it out to the zeropagezeropage. .

arch/i386/kernel/setup.c:parse_mem_cmdline() (called by arch/i386/kernel/setup.c:parse_mem_cmdline() (called by setup_archsetup_arch(), itself (), itself
called by called by start_kernelstart_kernel()) copies 256 bytes from ()) copies 256 bytes from zeropagezeropage into into
saved_command_linesaved_command_line which is displayed by /proc/which is displayed by /proc/cmdlinecmdline..

We return to We return to commandlinecommandline in in parse_optionsparse_options() (called by () (called by start_kernelstart_kernel()) which ()) which
processes some "inprocesses some "in--kernel" parameters (currently "init=" and kernel" parameters (currently "init=" and
environment/arguments for init) and passes each word to environment/arguments for init) and passes each word to checksetupchecksetup(). ().

checksetupchecksetup() goes through the code in ELF section .() goes through the code in ELF section .setup.initsetup.init and invokes each and invokes each
function, passing it the word if it matches function, passing it the word if it matches

2. 2. Process and Interrupt Process and Interrupt
ManagementManagement

2.1 Task Structure and Process Table2.1 Task Structure and Process Table
2.2 Creation and termination of tasks and 2.2 Creation and termination of tasks and
kernel threadskernel threads
2.3 Linux Scheduler2.3 Linux Scheduler
2.4 Linux linked list implementation2.4 Linux linked list implementation
2.5 Wait Queues2.5 Wait Queues

2.1 Task Structure and Process Table 2.1 Task Structure and Process Table

Every process under Linux is dynamically Every process under Linux is dynamically
allocated a allocated a structstruct task_structtask_struct structure structure
The maximum number of processes which can The maximum number of processes which can
be created on Linux is limited only by the be created on Linux is limited only by the
amount of physical memory amount of physical memory
The set of processes on the Linux system is The set of processes on the Linux system is
represented as a collection of represented as a collection of structstruct task_structtask_struct
structures which are linked in two ways: structures which are linked in two ways:

as a as a hashtablehashtable, hashed by , hashed by pidpid, and , and
as a circular, doublyas a circular, doubly--linked list using plinked list using p-->>next_tasknext_task
and pand p-->>prev_taskprev_task pointers. pointers.

2.2 Creation and termination of tasks and 2.2 Creation and termination of tasks and
kernel threadskernel threads

Under Linux, there are three kinds of processes: Under Linux, there are three kinds of processes:
The idle The idle thread(sthread(s),),
kernel threads, kernel threads,
user tasks. user tasks.

The idle thread is created at compile time for the first CPU; itThe idle thread is created at compile time for the first CPU; it is then is then
"manually" created for each CPU by means of arch"manually" created for each CPU by means of arch--specific specific
fork_by_handfork_by_hand() ()
User tasks are created by means of User tasks are created by means of clone(2)clone(2) or or fork(2)fork(2) system calls system calls
There are several ways for tasks to terminate: There are several ways for tasks to terminate:

by making by making exit(2)exit(2) system call; system call;
by being delivered a signal with default disposition to die; by being delivered a signal with default disposition to die;
by being forced to die under certain exceptions; by being forced to die under certain exceptions;
by calling by calling bdflush(2)bdflush(2) with with funcfunc == 1== 1

2.3 Linux Scheduler 2.3 Linux Scheduler
The job of a scheduler is to arbitrate access to the current CPUThe job of a scheduler is to arbitrate access to the current CPU between between
multiple processes multiple processes
The fields of task structure relevant to scheduler include The fields of task structure relevant to scheduler include

pp-->>need_reschedneed_resched: this field is set if schedule() should be invoked : this field is set if schedule() should be invoked
at the 'next opportunity'. at the 'next opportunity'.
pp-->counter: number of clock ticks left to run in this scheduling >counter: number of clock ticks left to run in this scheduling
slice, decremented by a timer. When this field becomes lower slice, decremented by a timer. When this field becomes lower
than or equal to zero, it is reset to 0 and pthan or equal to zero, it is reset to 0 and p-->>need_reschedneed_resched is set. is set.
This is also sometimes called 'dynamic priority' of a process This is also sometimes called 'dynamic priority' of a process
because it can change by itself. because it can change by itself.
pp-->priority: the process' static priority, only changed through >priority: the process' static priority, only changed through
wellwell--known system calls like known system calls like nice(2)nice(2), POSIX.1b , POSIX.1b
sched_setparam(2)sched_setparam(2) or 4.4BSD/SVR4 or 4.4BSD/SVR4 setpriority(2)setpriority(2). .
pp-->>rt_priorityrt_priority: : realtimerealtime priority priority
pp-->policy: the scheduling policy, specifies which scheduling >policy: the scheduling policy, specifies which scheduling
class the task belongs to class the task belongs to

2.4 Linux linked list implementation 2.4 Linux linked list implementation

Before we go on to examine implementation of wait Before we go on to examine implementation of wait
queues, we must acquaint ourselves with the Linux queues, we must acquaint ourselves with the Linux
standard doublystandard doubly--linked list implementation linked list implementation
The fundamental data structure here is The fundamental data structure here is structstruct list_headlist_head

structstruct list_headlist_head
{ {

structstruct list_headlist_head *next, **next, *prevprev;;
}; };

2.5 Wait Queues 2.5 Wait Queues
When a process requests the kernel to do something which is currWhen a process requests the kernel to do something which is currently ently
impossible but that may become possible later, the process is puimpossible but that may become possible later, the process is put to sleep t to sleep
and is woken up when the request is more likely to be satisfied.and is woken up when the request is more likely to be satisfied. One of the One of the
kernel mechanisms used for this is called a 'wait queue'. kernel mechanisms used for this is called a 'wait queue'.

you can define your own you can define your own waitqueuewaitqueue and use and use
add/add/remove_wait_queueremove_wait_queue to add and remove yourself to add and remove yourself
from it from it
wake_up/wake_up_interruptiblewake_up/wake_up_interruptible can be used to wake up can be used to wake up
when needed when needed
An example of autonomous An example of autonomous waitqueuewaitqueue usage is usage is
interaction between user process requesting data via interaction between user process requesting data via
read(2)read(2) system callsystem call

3. 3. Virtual Virtual FilesystemFilesystem (VFS)(VFS)

3.1 3.1 InodeInode Caches and Interaction with Caches and Interaction with
DcacheDcache
3.2 3.2 FilesystemFilesystem Registration/Registration/UnregistrationUnregistration
3.3 File Descriptor Management3.3 File Descriptor Management
3.4 File Structure Management3.4 File Structure Management
3.5 3.5 SuperblockSuperblock and and MountpointMountpoint
ManagementManagement

3.1 3.1 InodeInode Caches and Interaction Caches and Interaction
with with DcacheDcache

In order to support multiple In order to support multiple filesystemsfilesystems, Linux contains a , Linux contains a
special kernel interface level called VFS (Virtual special kernel interface level called VFS (Virtual

FilesystemFilesystem Switch).Switch).
Linux Linux inodeinode cache is implemented in a single file, cache is implemented in a single file,
fs/inode.cfs/inode.c, which consists of 977 lines of code , which consists of 977 lines of code
The type lists are anchored from The type lists are anchored from inodeinode-->>i_listi_list, the , the
hashtablehashtable from from inodeinode-->>i_hashi_hash
All these lists are protected by a single spinlock: All these lists are protected by a single spinlock:
inode_lockinode_lock. .

3.2 3.2 FilesystemFilesystem
Registration/Registration/UnregistrationUnregistration

The Linux kernel provides a mechanism for new The Linux kernel provides a mechanism for new
filesystemsfilesystems to be written with minimum effort to be written with minimum effort

All that is needed is to fill in a All that is needed is to fill in a structstruct file_system_typefile_system_type
structure and register it with the VFS using the structure and register it with the VFS using the
register_filesystemregister_filesystem() ()

The job of the The job of the read_superread_super() function is to fill in the fields () function is to fill in the fields
of the of the superblocksuperblock, allocate root , allocate root inodeinode and and initialiseinitialise any any
fsfs--private information associated with this mounted private information associated with this mounted
instance of the instance of the filesystemfilesystem

3.3 File Descriptor Management 3.3 File Descriptor Management
Under Linux there are several levels of indirection between userUnder Linux there are several levels of indirection between user file file

descriptor and the kernel descriptor and the kernel inodeinode structurestructure
When a process makes When a process makes open(2)open(2) system call, the kernel returns a system call, the kernel returns a
small nonsmall non--negative integer which can be used for subsequent I/O negative integer which can be used for subsequent I/O
operations on this file. operations on this file.
This integer is an index into an array of pointers to This integer is an index into an array of pointers to structstruct file file
Each file structure points to a Each file structure points to a dentrydentry via filevia file-->>f_dentryf_dentry
And each And each dentrydentry points to an points to an inodeinode via via dentrydentry-->>d_inoded_inode. .
Each task contains a field Each task contains a field tsktsk-->files which is a pointer to >files which is a pointer to structstruct
files_structfiles_struct

3.4 File Structure Management 3.4 File Structure Management

The file structure is declared in include/The file structure is declared in include/linux/fs.hlinux/fs.h
Let us look at the various fields of Let us look at the various fields of structstruct file: file:

f_listf_list , , f_dentryf_dentry , , f_vfsmntf_vfsmnt , , f_flagsf_flags etcetc
file_operationsfile_operations structure which contains the methods that structure which contains the methods that
can be invoked on files can be invoked on files

3.5 3.5 SuperblockSuperblock and and MountpointMountpoint
ManagementManagement

Under Linux, information about mounted Under Linux, information about mounted filesystemsfilesystems is is
kept in two separate structures kept in two separate structures -- super_blocksuper_block and and
vfsmountvfsmount
structstruct super_blocksuper_block is declared in include/is declared in include/linux/fs.hlinux/fs.h
The various fields in the The various fields in the super_blocksuper_block structure are structure are

s_lists_list , , s_devs_dev , , s_dirtys_dirty , , s_filess_files etcetc
The The superblocksuperblock operations are described in the operations are described in the
super_operationssuper_operations structure structure

4. 4. IPC mechanismsIPC mechanisms

5.1 Semaphores5.1 Semaphores
5.2 Message queues5.2 Message queues
5.3 Shared Memory5.3 Shared Memory
5.4 Linux IPC Primitives5.4 Linux IPC Primitives

4.1 Semaphores 4.1 Semaphores
The functions described in this section implement the The functions described in this section implement the
user level semaphore mechanismsuser level semaphore mechanisms
System calls are…System calls are…

sys_semgetsys_semget() ()
sys_semctlsys_semctl() ()
sys_semopsys_semop() ()

The following structures are used specifically for The following structures are used specifically for
semaphore support semaphore support

structstruct sem_arraysem_array
structstruct sembufsembuf

4.2 Message queues 4.2 Message queues

Message System Call Interfaces Message System Call Interfaces
sys_msggetsys_msgget() ()
sys_msgctlsys_msgctl() ()
sys_msgsndsys_msgsnd() ()
sys_msgrcvsys_msgrcv() ()

Message Specific Structures Message Specific Structures
structstruct msg_queuemsg_queue
structstruct msqid_dsmsqid_ds

4.3 Shared Memory 4.3 Shared Memory

Shared Memory System Call Interfaces Shared Memory System Call Interfaces
sys_shmgetsys_shmget() ()
sys_shmctlsys_shmctl() ()
sys_shmatsys_shmat() ()
sys_shmdtsys_shmdt() ()

Shared Memory Support Structures Shared Memory Support Structures
structstruct shm_infoshm_info
structstruct shmid64_dsshmid64_ds

4.4 Linux IPC Primitives 4.4 Linux IPC Primitives
Generic Linux IPC Primitives used with Semaphores, Generic Linux IPC Primitives used with Semaphores,
Messages,andMessages,and Shared Memory Shared Memory

ipc_allocipc_alloc() ()
ipc_addidipc_addid() ()
ipc_lockipc_lock() ()

Generic IPC Structures used with Generic IPC Structures used with
Semaphores,MessagesSemaphores,Messages, and Shared Memory , and Shared Memory

structstruct kern_ipc_permkern_ipc_perm
structstruct ipc_idipc_id

Embedded LinuxEmbedded Linux

OverviewOverview
Embedded LinuxEmbedded Linux is the designation for is the designation for LinuxLinux--based based
operating systemsoperating systems that are used as that are used as

Cell phonesCell phones
Personal digital Personal digital assitantsassitants
Media player handsetsMedia player handsets
Consumer electronic devices etc.Consumer electronic devices etc.

Other embedded applications too…Other embedded applications too…
Networking equipmentNetworking equipment
Machine controlMachine control
Industrial automationIndustrial automation
Navigation equipmentNavigation equipment

DifferencesDifferences
Embedded Linux can be characterized as different from Embedded Linux can be characterized as different from
desktop and server versions of Linux desktop and server versions of Linux
Limited resources in terms of RAM, secondary storageLimited resources in terms of RAM, secondary storage
Frequently involves Frequently involves flashdiskflashdisk based memories instead of based memories instead of
hard diskshard disks
Embedded Linux is tailor made specific to required Embedded Linux is tailor made specific to required
application and target hardwareapplication and target hardware
Optimizations are done in order to make the OS Real Optimizations are done in order to make the OS Real
Time OS (RTOS)Time OS (RTOS)

AdvantagesAdvantages
the the source codesource code can be modified and redistributedcan be modified and redistributed
relatively small footprint (a typical installation may relatively small footprint (a typical installation may
require less than two megabytes of memory)require less than two megabytes of memory)

no royalty or licensing costsno royalty or licensing costs
mature and stable mature and stable

large support baselarge support base

The Linux FoundationThe Linux Foundation

The Linux Foundation manages the ELC The Linux Foundation manages the ELC
Platform specificationPlatform specification
ELC is Embedded Linux ConsortiumELC is Embedded Linux Consortium
It defines the set of standard interfaces to It defines the set of standard interfaces to
be employed while developing embedded be employed while developing embedded
LinuxLinux

System System EnviromentsEnviroments

Minimal System Environment: Requires no Minimal System Environment: Requires no
user interaction. Only minor storageuser interaction. Only minor storage
Intermediate System Intermediate System EnviromentEnviroment: Adds : Adds
support for massive file storage, support for massive file storage,
Asynchronous I/O etcAsynchronous I/O etc
Full System Environment: A Full, Full System Environment: A Full,
multipurporsemultipurporse LinuxLinux

EnviromentEnviroment Function Group TableFunction Group Table

R R –– Required, P Required, P –– Optional Optional
(POSIX), L (POSIX), L –– Optional (LSB Optional (LSB
1.2)1.2)

Environment Function Group Table(2)Environment Function Group Table(2)

Interface Function GroupsInterface Function Groups
Each group's elements will be separated to indicate the Each group's elements will be separated to indicate the
specification upon which they are based: specification upon which they are based:

POSIX.1POSIX.1--2001 is a reference to IEEE POSIX 1003.12001 is a reference to IEEE POSIX 1003.1--2001, 2001,
including Rationale including Rationale
LSB1.2 is a reference to Linux Standard Base Version 1.2.0 LSB1.2 is a reference to Linux Standard Base Version 1.2.0
SUSv3 is a reference to the Single UNIX Specification, Version 3SUSv3 is a reference to the Single UNIX Specification, Version 3

ThreadsThreads
LSB 1.2 BasedLSB 1.2 Based
POSIX BasedPOSIX Based

Feature Functions and MacrosFeature Functions and Macros
A conforming implementation shall make available an <A conforming implementation shall make available an <elcstd.helcstd.h> >
header, defining the symbolic constants and types described in theader, defining the symbolic constants and types described in this his
section. The actual values of the constants are unspecified excesection. The actual values of the constants are unspecified except pt
as shown.as shown.
The following symbolic constants shall be defined in <The following symbolic constants shall be defined in <elcstd.helcstd.h>:>:
_ELCPS_VERSION_ELCPS_VERSION
Long integer value indicating version of ELCPS to which the Long integer value indicating version of ELCPS to which the
implementation conforms. For implementations conforming to this implementation conforms. For implementations conforming to this

particular version, the value shall be 200212L.particular version, the value shall be 200212L.

ConstantsConstants

ReferencesReferences

The Embedded Linux ConsortiumThe Embedded Linux Consortium
http://www.linuxhttp://www.linux--
foundation.org/en/ELC/ELCPSfoundation.org/en/ELC/ELCPS
The Linux Kernel The Linux Kernel FAQsFAQs

http://http://www.faqs.orgwww.faqs.org

